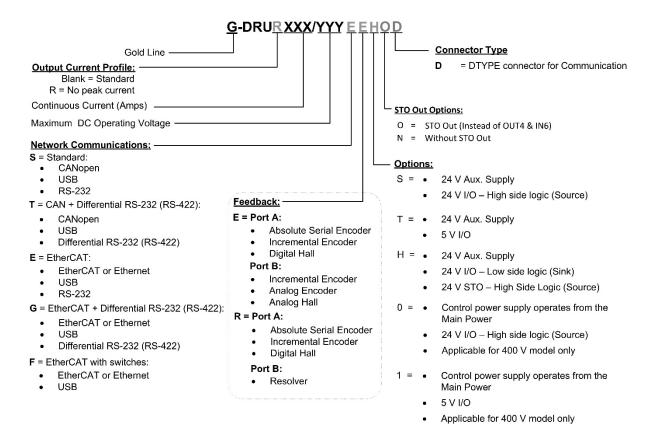

Gold Drum HV (High Voltage) DTYPE Digital Servo Drive Installation Guide EtherCAT and CAN

Notice

This guide is delivered subject to the following conditions and restrictions:

- This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such information is supplied solely for the purpose of assisting users of the Gold Drum HV (High Voltage) DTYPE servo drive in its installation.
- The text and graphics included in this manual are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.
- Information in this document is subject to change without notice.


Document no. MAN-G-DRUMHVIG-EC (Ver. 1.001)

Copyright © 2017

Elmo Motion Control Ltd.

All rights reserved.

Catalog Number

Revision History

Version	Date
Ver. 1.000	Sept 2016
Ver. 1.001	Aug 2017

Chapter 1: This Installation Guide		his Installation Guide	6
Chapter	2: S	afety Information	6
2.1.	Warn	iings	7
2.2.	Cautio	ons	7
2.3.	CE Ma	arking Conformance	7
2.4.	Warra	anty Information	7
Chapter	3: P	Product Description	8
Chapter	4: T	echnical Information	9
4.1.	Physic	cal Specifications	9
4.2.	Techr	nical Data for 400 V Drive	9
4.3.	Techr	nical Data for 800 V Drive	10
	4.3.1.	. Auxiliary Supply	10
4.4.	Produ	uct Features	11
4.5.	Enviro	onmental Conditions	12
	4.5.1.	. Gold Line	12
	4.5.2.	. Gold Line Standards	13
Chapter	5: Ir	nstallation	14
5.1.	Unpa	cking the Drive Components	14
5.2.	Conn	ectors Types	15
5.3.	Mour	nting the Gold Drum HV (High Voltage) DTYPE	18
5.4.	Conn	ection Diagrams	19
	5.4.1.	. Connection Diagrams for EtherCAT Version	20
	5.4.2.	. Connection Diagrams for CAN Version	22
Chapter	6: V	Viring	24
6.1.	Basic	Recommendations	26
	6.1.1.	. General	26
	6.1.2.	. Feedback Cable Port A and Port B Connector	27
	6.1.3.	. Feedback Cable Port C Connector	28
	6.1.4.	. IO Cable Connector	28
	6.1.5.	. STO (Port C) Cable Connector	29
6.2.	Moto	or Power Connector Pinouts	30
6.3.	Conn	ecting the DC Power and the Motor Power Cables	32
	6.3.1.	. Motor Power	33
6.4.	Main	Power, Auxiliary Power	34
	6.4.1.	. Main Power	35
		6.4.1.1. Direct-to-Mains Power Source	35
		6.4.1.2. Battery Power Supply	38
	6.4.2.	. Control and Backup Supply	39

6.5.	Port A		41	
	6.5.1.	Incremental Encoder		
	6.5.2.	Hall Sensor		
	6.5.3.	Absolute Serial Type Encoder	43	
6.6.	Port B C	Port B Connector		
	6.6.1.	Incremental Encoder	46	
	6.6.2.	Interpolated Analog Encoder	47	
	6.6.3.	Resolver	48	
6.7.	Port C,	Analog Input, and STO	49	
	6.7.1.	Port C	51	
	6.7.2.	Analog Input	51	
	6.7.3.	STO	52	
		6.7.3.1. Source Mode PLC Voltage Level	52	
		6.7.3.2. TTL Mode TTL Voltage Level	52	
6.8.	Digital I	Inputs and Outputs	53	
	6.8.1.	Digital Input and Output TTL Mode	55	
	6.8.2.	Digital Input and Output PLC Source Mode	57	
	6.8.3.	Digital Input and Output Sink Mode	59	
6.9.	USB 2.0	Option 1	61	
6.10.	VL/Com	nmunication Connector	63	
	6.10.1.	USB 2.0 Option 2	64	
	6.10.2.	RS-232	65	
	6.10.3.	RS-422 (Differential Rs-232)	65	
6.11.	EtherCA	AT Communications Version	66	
	6.11.1.	EtherCAT/Ethernet Pinouts	66	
	6.11.2.	EtherCAT Wiring	67	
	6.11.3.	EtherCAT and Drive Status Indicator LEDs	68	
	6.11.4.	EtherCAT Rotary Switches	70	
6.12.	CAN Co	mmunications Version	71	
	6.12.1.	CAN Wiring	72	
	6.12.2.	CAN Indicators	73	
6.13.	Heat Di	ssipation	74	
	6.13.1.	Gold Drum HV (High Voltage) DTYPE Thermal Data	74	
	6.13.2.	Heat Dissipation Data	75	
	6.13.3.	How to Use the Charts	76	
6.14.	Powerir	ng Up	77	
6.15.	Initializi	ing the System	77	
Chapter	7: Gol	ld Drum HV (High Voltage) DTYPE Dimensions	78	

Chapter 1: This Installation Guide

This installation Guide details the technical data, pinouts, and power connectivity of the Gold Drum HV (High Voltage) DTYPE. For a comprehensive detailed description of the functions, refer to the MAN-G-Panel Mounted Drives Hardware manual, which describes Panel Mounted products.

Chapter 2: Safety Information

In order to achieve the optimum, safe operation of the Gold Drum HV (High Voltage) DTYPE, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Gold Drum HV (High Voltage) DTYPE and accompanying equipment.

Please read this chapter carefully before you begin the installation process.

Before you start, ensure that all system components are connected to earth ground. Electrical safety is provided through a low-resistance earth connection.

Only qualified personnel may install, adjust, maintain and repair the servo drive. A qualified person has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.

The Gold Drum HV (High Voltage) DTYPE contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.

To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.

The following safety symbols are used in this and all Elmo Motion Control manuals:

Warning:

This information is needed to avoid a safety hazard, which might cause bodily injury or death as a result of incorrect operation.

Caution:

This information is necessary to prevent bodily injury, damage to the product or to other equipment.

Important:

Identifies information that is critical for successful application and understanding of the product.

2.1. Warnings

- To avoid electric arcing and hazards to personnel and electrical contacts, never connect/disconnect the servo drive while the power source is on.
- Power cables can carry a high voltage, even when the motor is not in motion. Disconnect the Gold Drum HV (High Voltage) DTYPE from all voltage sources before servicing.
- The high voltage products within the Gold Line range contain grounding conduits for electric current protection. Any disruption to these conduits may cause the instrument to become hot (live) and dangerous.
- After shutting off the power and removing the power source from your equipment, wait at least 1 minute before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

2.2. Cautions

- The maximum DC power supply connected to the instrument must comply with the parameters outlined in this guide.
- When connecting the Gold Drum HV (High Voltage) DTYPE to an approved isolated auxiliary
 power supply, connect it through a line that is separated from hazardous live voltages using
 reinforced or double insulation in accordance with approved safety standards.
- Before switching on the Gold Drum HV (High Voltage) DTYPE, verify that all safety
 precautions have been observed and that the installation procedures in this manual have
 been followed.
- Make sure that the Safe Torque Off is operational

2.3. CE Marking Conformance

The Gold Drum HV (High Voltage) DTYPE is intended for incorporation in a machine or end product. The actual end product must comply with all safety aspects of the relevant requirements of the European Safety of Machinery Directive 2006/42/EC as amended, and with those of the most recent versions of standards EN 60204-1 and EN ISO 12100 at the least, and in accordance with 2006/95/EC.

Concerning electrical equipment designed for use within certain voltage limits, the Gold Drum HV (High Voltage) DTYPE meets the provisions outlined in 2006/95/EC. The party responsible for ensuring that the equipment meets the limits required by EMC regulations is the manufacturer of the end product.

2.4. Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. All Elmo drives are warranted for a period of 12 months from the date of shipment. No other warranties, expressed or implied — and including a warranty of merchantability and fitness for a particular purpose — extend beyond this warranty.

Chapter 3: Product Description

The Gold Drum HV (High Voltage) DTYPE series of digital servo drives are highly resilient and operate from a DC Power Voltage Input source. They are designed to deliver the highest density of power and intelligence. The Gold Drum HV (High Voltage) DTYPE delivers up to **65 kW of continuous power** in a compact package.

The digital drives are part of Elmo's advanced Gold Line. They operate from a DC power source in current, velocity, position and advanced position modes, in conjunction with a permanent-magnet synchronous brushless motor, DC brush motor, linear motor or voice coil. They are designed for use with any type of sinusoidal and trapezoidal commutation, with vector control. The Gold Drum HV (High Voltage) DTYPE can operate as a stand-alone device or as part of a multi-axis system in a distributed configuration on a real-time network.

The drives are easily set up and tuned using Elmo Application Studio software tools. This Windows-based application enables users to quickly and simply configure the servo drive for optimal use with their motor. The Gold Drum HV (High Voltage) DTYPE, as part of the Gold Line, is fully programmable with Elmo's motion control language.

Power to the drives is provided by a DC power source (not included with the Gold Drum HV (High Voltage) DTYPE).

Since the power stage is fully isolated from the control stage, the DC rectifier can be fed directly from the mains, without the need for a bulky and expensive transformer.

If backup functionality is required to store control parameters in the event of a mains power outage, then an S, T, or H-model Gold Drum HV (High Voltage) DTYPE should be used, with an external 24 VDC isolated supply connected to it.

Note: The backup functionality can operate from an isolated voltage source within the range of 18 to 30 VDC.

Whenever backup functionality is not required, Gold Drum HV (High Voltage) DTYPE models that have the 0 or 1 option (only for 400 V model) in the catalog number (refer to the section Catalog Number above) can be used, i.e., they do not have a 24 V control supply. In these models, a smart control-supply algorithm enables the Gold Drum HV (High Voltage) DTYPE to operate with only the main power supply VP+ and VN-, with no need for a 24 VDC auxiliary power supply for the logic.

Chapter 4: Technical Information

4.1. Physical Specifications

Feature	Units	All Types
Weight	g (oz)	1.65 Kg (58.202 oz)
Dimension	mm (in)	180 x 142 x 75.2 (7.08" x 5.53" x 2.96")
Mounting method		Panel / Wall Mounted

4.2. Technical Data for 400 V Drive

Feature	Units	50/400	R100/400
Minimum supply voltage	VDC	*For S, T, or H option = 50	
		For 0 or	1 option = 100
Nominal supply voltage	VDC		325
Maximum supply voltage	VDC		400
Maximum continuous power output	kW	16.5 33	
Efficiency at rated power (at nominal conditions)	%	> 98	
Auxiliary supply voltage option	VDC	18 to 30 VDC (only in S, T, or H option)	
Auxiliary power supply	VA	7	
Continuous current limit (Ic) Amplitude sinusoidal/DC trapezoidal commutation	А	50 100	
Continuous RMS sinusoidal commutation current limit (Ic)	А	35	71
Peak Current	Α	100	No Peak

4.3. Technical Data for 800 V Drive

Feature	Units	35/800	50/800	R70/800	R100/800
Minimum supply voltage	VDC		*For S, T, or H option = 95		
Nominal supply voltage	VDC			r 400 VAC	
			680 fo	r 480 VAC	
Maximum supply voltage	VDC			780	
Maximum continuous power output	kW	22.5	32.5	45	65
Efficiency at rated power (at nominal conditions)	%	> 98			
Auxiliary supply voltage option	VDC	18 to 30 VDC (only in S, T, or H option)			
Auxiliary power supply	VA			7	
Continuous current limit (Ic) Amplitude sinusoidal/DC trapezoidal commutation	А	35	50	70	100
Continuous RMS sinusoidal commutation current limit (Ic)	А	25	35	50	71
Peak Current	Α	70	100	No Peak	No Peak

For all two Technical Data tables above

Note on current ratings: The current ratings of the Gold Drum HV (High Voltage) DTYPE are given in units of DC amperes (ratings that are used for trapezoidal commutation or DC motors). The RMS (sinusoidal commutation) value is the DC value divided by 1.41.

4.3.1. Auxiliary Supply

Feature	Details
Auxiliary power supply	Isolated DC source only
Auxiliary supply input voltage	18 VDC to 30 VDC
Auxiliary supply input power	7 VA

^{*}Refer to the section Catalog Number above for details on the part number. The S, T, or H option appears in models where there is a 24 V control supply. If there is a 0 or 1 option, the control power supply operates from the main power.

4.4. Product Features

Main Feature	Details	Presence / No.
	TTL, or	٧
STO	PLC Source, or	٧
	STO Output Status (instead of OUT4 & IN6)	V
	TTL or	6
Digital Input Option	PLC Source or	6
·	PLC Sink	6
Digital Output	TTL or	4
Option	PLC Source or	4
	PLC Sink	4
Analog Input	Differential ±10 V analog input	1
Feedback	Standard Port A, B, & C	٧
	USB	٧
	EtherCAT without switches or	٧
Communication	CAN	V
Option	EtherCAT with switches or	V
	RS-232 or	V
	RS-422	٧

4.5. Environmental Conditions

You can guarantee the safe operation of the Gold Drum HV (High Voltage) DTYPE by ensuring that it is installed in an appropriate environment.

4.5.1. Gold Line

Feature	Details
Operating ambient temperature according to IEC60068-2-2	0 °C to 40 °C (32 °F to 104 °F)
Storage temperature	-20 °C to +85 °C (-4 °F to +185 °F)
Maximum non-condensing humidity according to IEC60068-2-78	95%
Maximum Operating Altitude	2,000 m (6562 feet) It should be noted that servo drives capable of higher operating altitudes are available on request.
Mechanical Shock according to IEC60068-2-27	15g / 11ms Half Sine
Vibration according to IEC60068-2-6	5 Hz ≤ f ≤ 10 Hz: ±10mm 10 Hz ≤ f ≤ 57 Hz: 4G 57 Hz ≤ f ≤ 500 Hz:5G

4.5.2. Gold Line Standards

The following table describes the Main Standards of the Gold Drum HV (High Voltage) DTYPE servo drive. For further details refer to the MAN-G-Panel Mounted Drives Hardware manual.

Main Standards	Item	
The related standards below apply to the performance of the servo drives as stated in the environmental conditions in section 4.5.1 Gold Line above.		
STO IEC 61800-5-2:2007 SIL 3	Adjustable speed electrical power drive systems – Safety requirements – Functional	
EN ISO 13849-1:2008 PL e, Cat 3	Safety of machinery — Safety-related parts of control systems.	
Approved IEC/EN 61800-5-1	Adjustable speed electrical power drive systems Safety requirements – Electrical, thermal and energy	
Recognized UL61800-5-1	Adjustable speed electrical power drive systems Safety requirements – Electrical, thermal and energy	
In compliance with UL 508C	th UL 508C Power Conversion Equipment	
In compliance with UL 840	Insulation Coordination Including Clearances and Creepage Distances for Electrical Equipment	
Conformity with CE 2006/95/EC	Low-voltage directive 2006/95/EC	
Recognized CSA C22.2 NO. 14-13	13 Industrial Control Equipment	

Chapter 5: Installation

The Gold Drum HV (High Voltage) DTYPE must be installed in a suitable environment and properly connected to its voltage supplies and the motor.

5.1. Unpacking the Drive Components

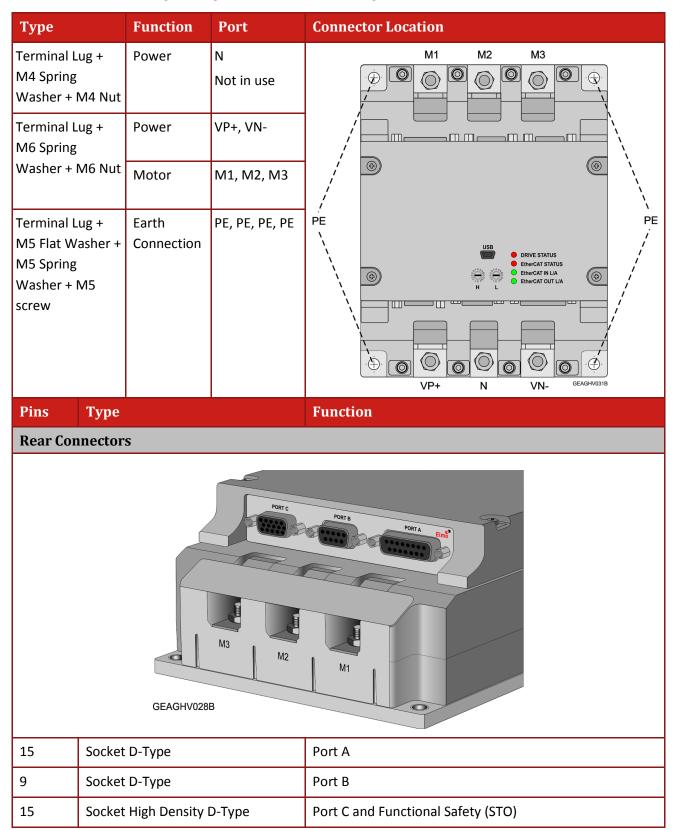
Before you begin working with the Gold Drum HV (High Voltage) DTYPE, verify that you have all of its components, as follows:

- The Gold Drum HV (High Voltage) DTYPE servo drive
- The Elmo Application Studio (EAS) software and software manual

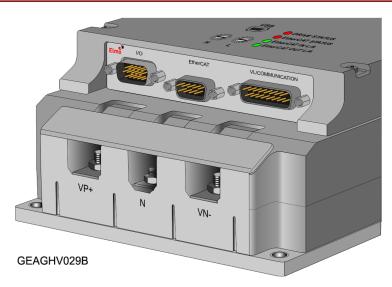
The Gold Drum HV (High Voltage) DTYPE is shipped in a cardboard box with Styrofoam protection.

To unpack the Gold Drum HV (High Voltage) DTYPE:

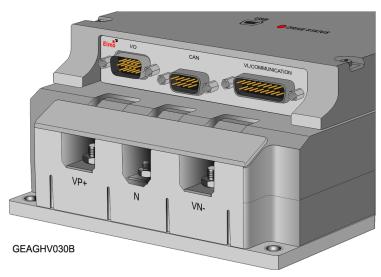
- 1. Carefully remove the servo drive from the box and the Styrofoam.
- 2. Check the drive to ensure that there is no visible damage to the instrument. If any damage has occurred, report it immediately to the carrier that delivered your drive.
- 3. To ensure that the Gold Drum HV (High Voltage) DTYPE you have unpacked is the appropriate type for your requirements, locate the part number sticker on the side of the Gold Drum HV (High Voltage) DTYPE. It looks like this:



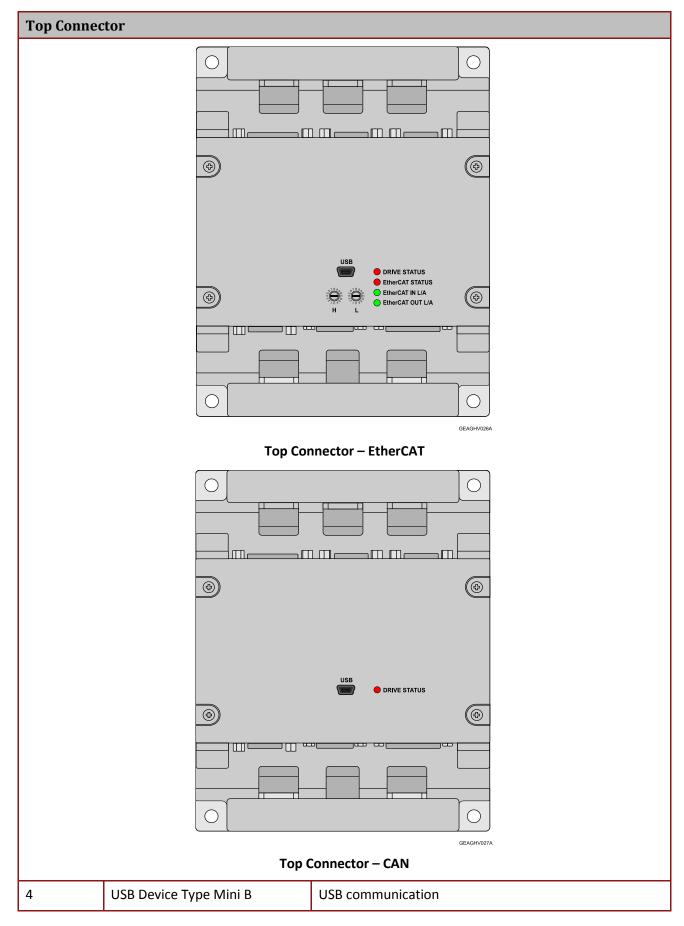
- 4. Verify that the Gold Drum HV (High Voltage) DTYPE type is the one that you ordered, and ensure that the voltage meets your specific requirements.
 - The part number at the top provides the type designation. Refer to the appropriate part number in the section Catalog Number at the beginning of the installation guide.



5.2. Connectors Types


The Gold Drum HV (High Voltage) DTYPE has the following ten connectors.

Front Connectors


Front Connectors - EtherCAT

Front Connectors – CAN

Pins	Туре	Function
15	Plug High Density D-Type	1/0
15	Plug D-Type	Auxiliary Supply, RS-232, RS-422, USB
EtherCA'	T Version	
9	Plug D-Type	Ethernet, EtherCAT IN, EtherCAT OUT, communication
CAN Version		
9	Plug D-Type	CAN IN, CAN OUT, communication

5.3. Mounting the Gold Drum HV (High Voltage) DTYPE

The Gold Drum HV (High Voltage) DTYPE has been designed for a standard mounting; Wall Mount along the back (can also be mounted horizontally on a metal surface)

M6 round head screws, one through each opening in the heat sink, are used to mount the Gold Drum HV (High Voltage) DTYPE (see the diagram below). For further details on installing the Gold Drum HV (High Voltage) DTYPE to the Heat Sink, refer to the document *GOLD DRUM HV Heat Sink Assembly Installation Guide (P/N MAN-G-DRUMHVHSIG)*.

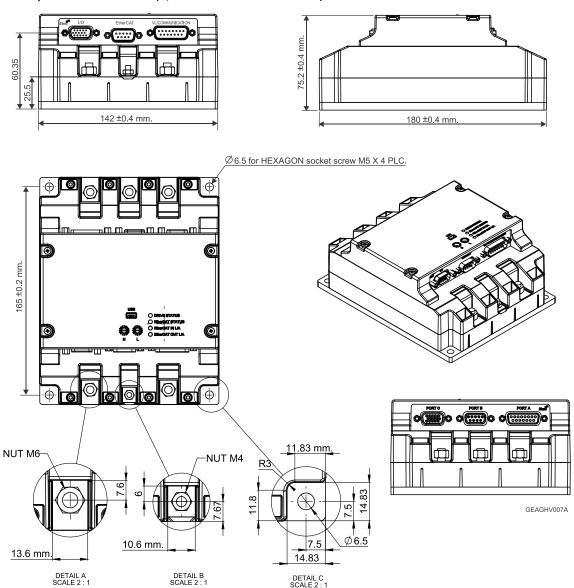


Figure 1: Mounting the Gold Drum HV (High Voltage) DTYPE

5.4. Connection Diagrams

There are two connection diagrams for EtherCAT and two for CAN that show the two different ways of connecting the power supply in the Gold Drum HV (High Voltage) DTYPE models:

- 400 V, and 800 V S, T, or H models (the catalog number has an S, T, or H option) that feature backup functionality and require an auxiliary 24 V backup supply. The drive will not be operative without the external 24 VDC supply.
- 400 V model without backup functionality with a 0 or 1 option. The drive's internal DC/DC converter is fed from the VP+ and VN- of the internal drive's bus line.

5.4.1. Connection Diagrams for EtherCAT Version

The following describes the connection diagrams for the EtherCAT version.

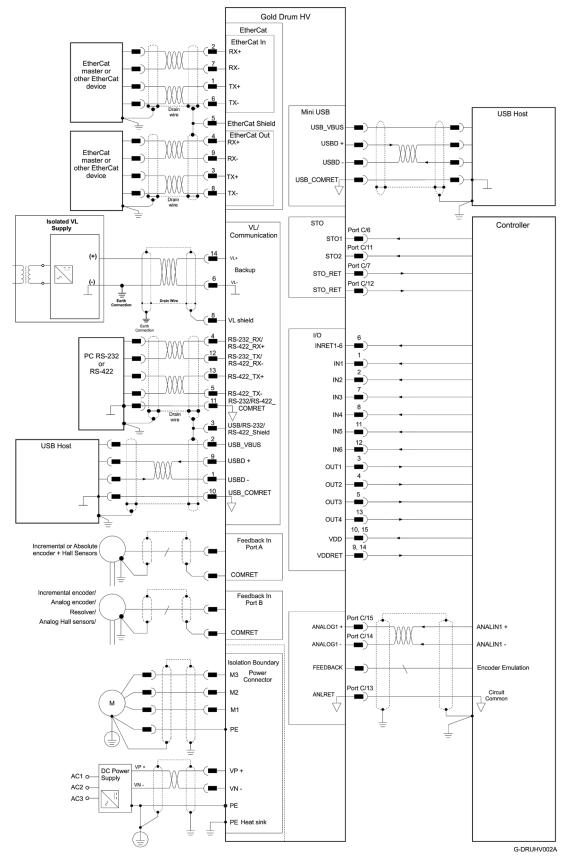


Figure 2: Gold Drum HV (High Voltage) DTYPE Connection Diagram for EtherCAT – with Power Supply Backup Functionality (S, T, or H Option)

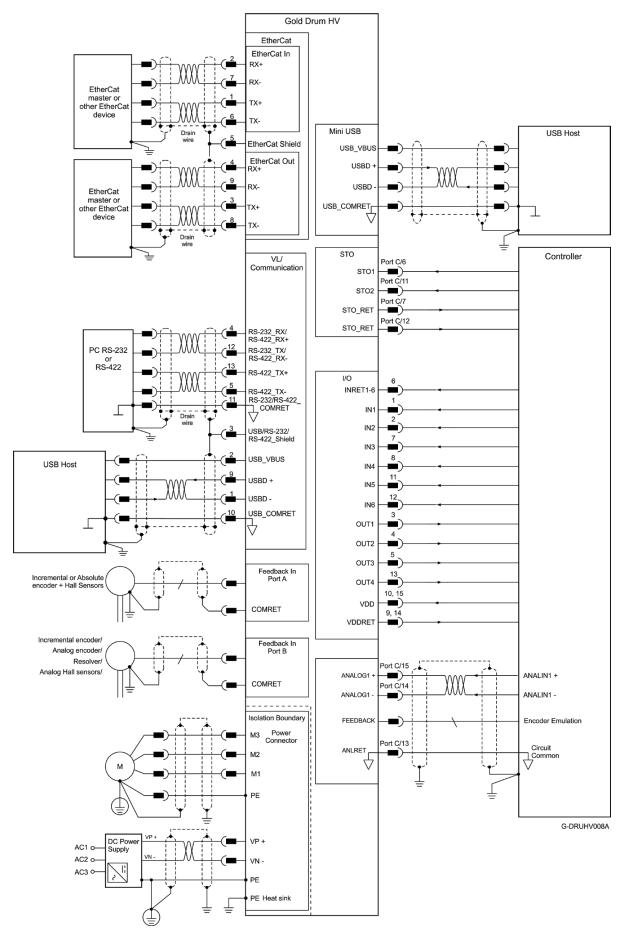


Figure 3: Gold Drum HV (High Voltage) DTYPE Connection Diagram for EtherCAT – 400 V without Power Supply Backup Functionality for 0 or 1 Options

5.4.2. Connection Diagrams for CAN Version

The following describes the connection diagrams for the CAN version.

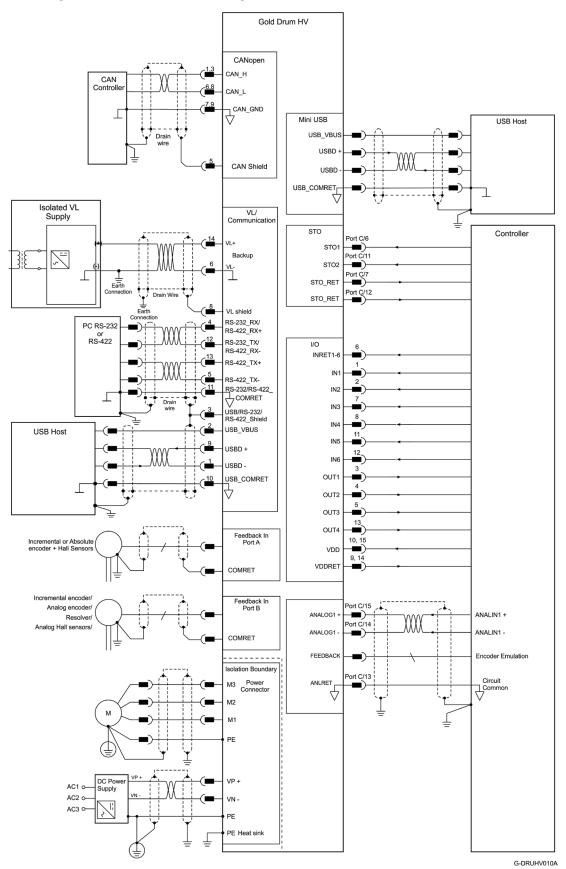


Figure 4: Gold Drum HV (High Voltage) DTYPE Connection Diagram for CAN – with Power Supply Backup Functionality (S, T, or H Option)

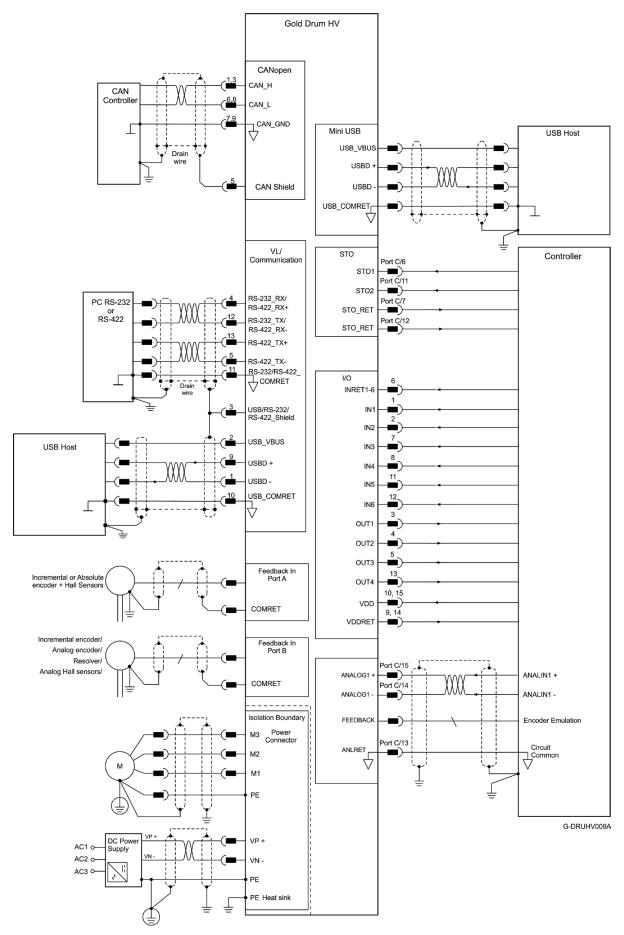
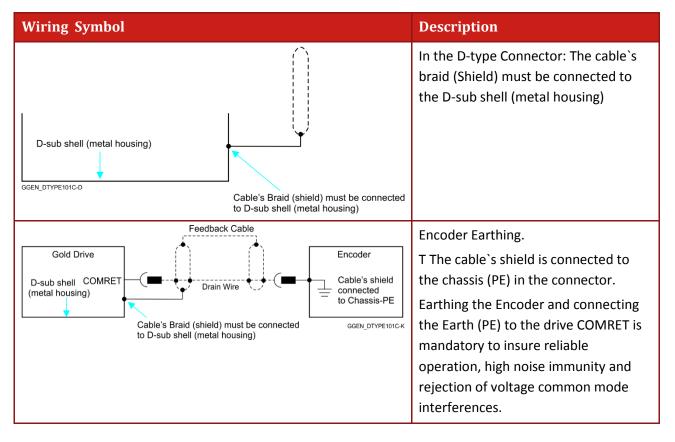


Figure 5: Gold Drum HV (High Voltage) DTYPE Connection Diagram for CAN – 400 V without Power Supply Backup Functionality for Model Drives with 0 or 1 Option


Chapter 6: Wiring

Once the product is mounted, you are ready to wire the device. Proper wiring, grounding and shielding are essential for ensuring safe, immune and optimal servo performance of the drive.

The following table legend describes the wiring symbols detailed in all installation guides.

Wiring Symbol	Description
<u></u>	Earth connection (PE)
GGEN_DTYPE101C-A	
	Earth Connection
GGEN_DTYPE101C-B	
	Common at the Controller
GGEN_DTYPE101C-C	
, .	Shielded cable with drain wire.
	The drain wire is a non-insulated wire that is in direct contact with the braid (shielding).
Drain Wire	Shielded cable with drain wire
GGEN_101D-D	significantly simplifies the wiring and earthing.
	Shielded cable braid only, without drain wire.
GGEN_101D-E	
	Twisted-pair wires
GGEN_101D-F	

6.1. Basic Recommendations

6.1.1. General

- Use shielded cables. For best results, the cable should have an aluminum foil shield covered by copper braid, and should contain a drain wire.
 Use 24, 26 or 28 AWG twisted-pair shielded with drain wire cables.
- Keep the cable as short as possible.
 Do not mount the power cables of the motor and power bus in the proximity of the control and feedback cables.
- 3. Ensure that in normal operating conditions, the "earth connection" wires and shield of the control cables *carry no current*. The only time these conductors carry current is under abnormal conditions, when electrical equipment has become a potential shock or fire hazard while conducting external EMI interferences directly to ground, in order to prevent them from affecting the drive. Failing to meet this requirement might result in drive/controller/host failure.
- 4. After completing the wiring, carefully inspect all wires to ensure tightness, good solder of joints and general safety.

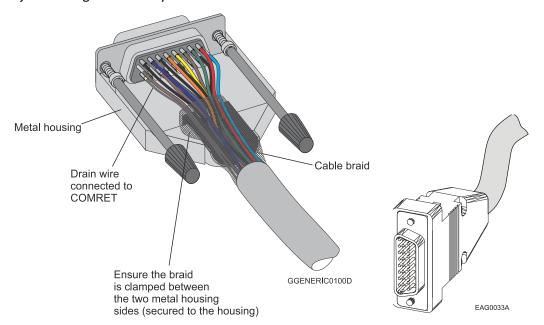
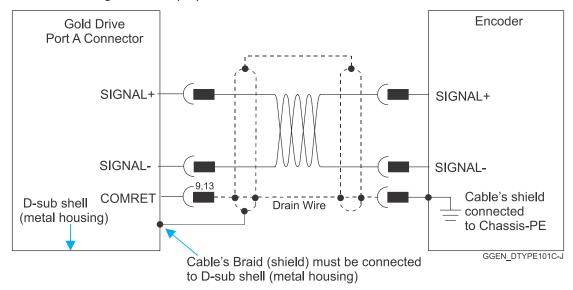


Figure 6: D-Type Cable Assemblies

- 5. Use only a D-Sub connector with a **metal housing** (Figure 6).
- 6. Make sure the braid shield is in tight contact with the metal housing of the D-type connector (Figure 6).


6.1.2. Feedback Cable Port A and Port B Connector

- 1. On the motor side connections, ground the shield to the motor chassis.
- 2. At least One COMRET (Common Return) must be connected to the PE.

Implement the following steps to connect the COMRET to the PE:

- a. At the drive, connect the feedback drain wire to one of the COMRET terminals in the D-Type feedback connector (Figure 7).
- b. At the motor, connect the feedback cable drain wire to the GND motor chassis terminal of the feedback connector.

The drawings below display two earth connections.

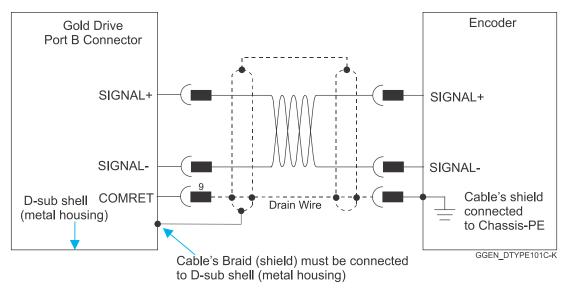


Figure 7: Feedback Port A and B Cable Assemblies

6.1.3. Feedback Cable Port C Connector

- 1. At the controller side connections, follow the controller manufacturer's recommendations concerning the shield.
- 2. The connection of the Drain wire to the Port C is not mandatory.

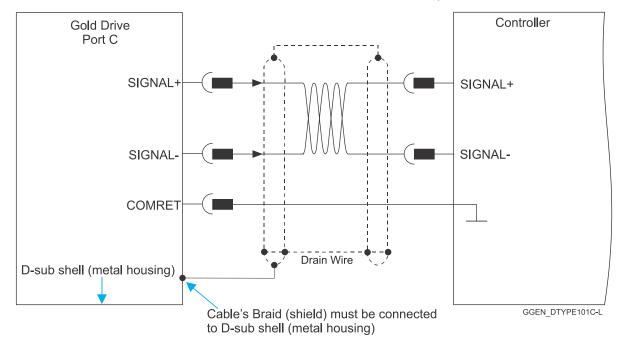
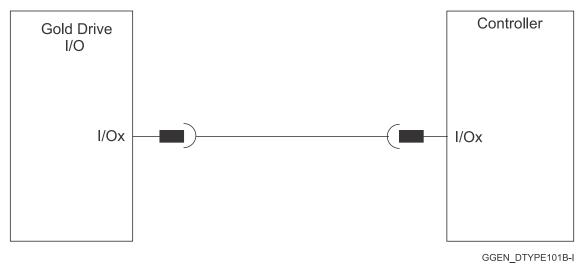



Figure 8: Feedback Port C Cable Assemblies

6.1.4. IO Cable Connector

It is recommended to use shielded cable, but is not mandatory.

Figure 9: Feedback IO Cable Assemblies

6.1.5. STO (Port C) Cable Connector

It is recommended to use shielded cable, but is not mandatory.

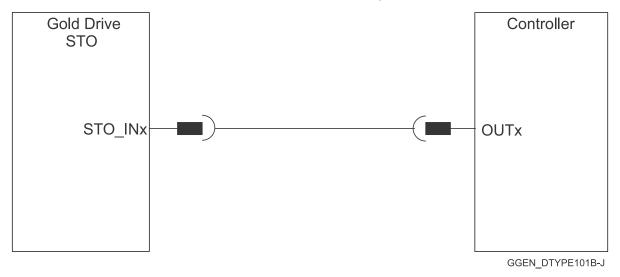


Figure 10: STO Cable Assemblies

6.2. Motor Power Connector Pinouts

See Chapter 8 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

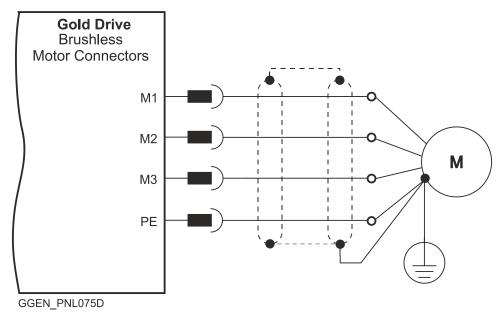
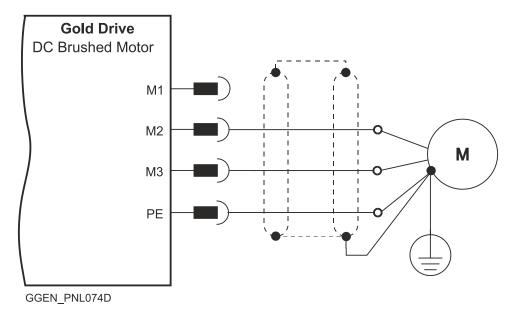
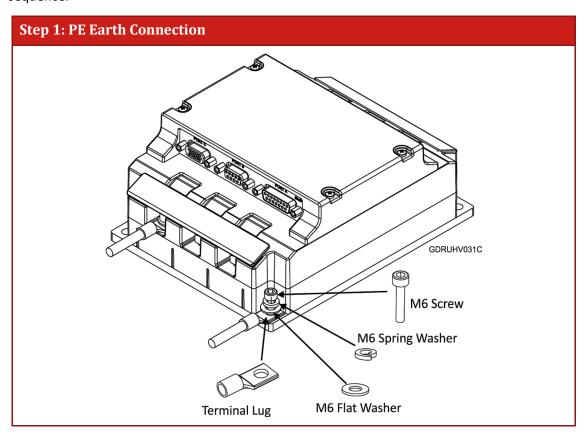
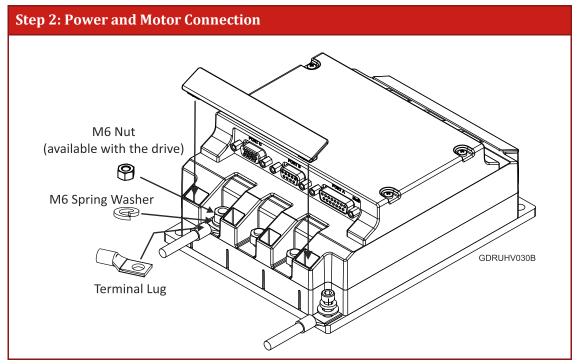



Figure 11: Brushless Motor Power Connection Diagram


Figure 12: Brushed Motor Power Connection Diagram

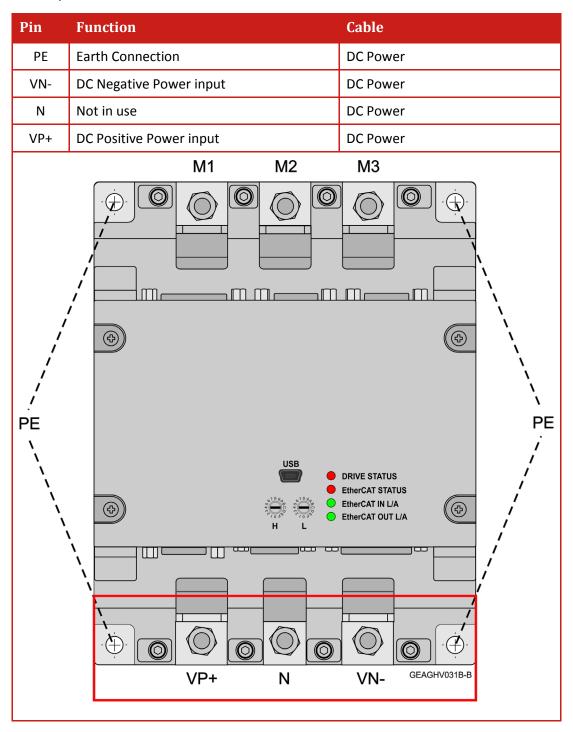


6.3. Connecting the DC Power and the Motor Power Cables

This section describes the installation of the cable terminal lugs for both the Main Power Cables to VP+, VN-, and PE terminals on the Gold Drum HV (High Voltage) DTYPE, and the Motor Power cables to the M1, M2, M3, and PE terminals on the Gold Drum HV (High Voltage) DTYPE.

Note: When connecting several motors, all the motor phases must be connected in an identical sequence.

Table 1: Connecting the Main Power and Motor Cables


6.3.1. Motor Power

- For best immunity, it is highly recommended to use a 4-wire shielded (not twisted) cable for the motor connection. The gauge is determined by the actual current consumption of the motor.
 - Connect the cable shield to the closest ground connection at the motor end. For better EMI performance, the shield should be connected to Earth Connection (heat sink mounting holes).
- 2. Ensure that the motor chassis is properly earthed.
- 3. Connect the appropriate terminal lugs from the Motor Power cables to the M1, M2, M3, and PE terminals on the Gold Drum HV (High Voltage) DTYPE.
 The phase connection is arbitrary as Elmo Application Studio II (EAS II) will establish the proper commutation automatically during setup. When tuning a number of drives, you can copy the setup file to the other drives and thus avoid tuning each drive separately. In this case the motor-phase order must be the same as on the first drive.
 - a. Install the motor cable to the drive using a barrel connector, M6 spring washer, and secure with anM6 nut (to the drive). The required M6 nut torque is 3 Nm.
 - b. Install the PE wire to the drive, using a barrel connector, M5 flat washer, M5 spring washer, and secure with an M5 screw to the heat-sink. The required M5 screw torque is 3 Nm.

6.4. Main Power, Auxiliary Power

The Gold Drum HV (High Voltage) DTYPE receives power from main and auxiliary supplies and delivers power to the motor.

6.4.1. Main Power

The DC power for the Gold Drum HV (High Voltage) DTYPE is delivered from a separated rectifying unit (supplied by the user). Elmo recommends using the Tambourine 100 rectifier specifically designed for use with Elmo drives which offers a range of versatile options.

The following sections contain topology recommendations for implementing three-phase supply chain.

The power stage of the Gold Drum HV (High Voltage) DTYPE is fully isolated from the other sections of the Gold Drum HV (High Voltage) DTYPE, such as the control-stage and the heat sink. **This** isolation allows the user to connect the common of the control section to the PE, a connection which significantly contributes to proper functionality, safety and EMI immunity, leading to better performance of the Gold Drum HV (High Voltage) DTYPE.

In addition, this isolation simplifies the requirements of the DC power supply that is used to power the DC bus of the Gold Drum HV (High Voltage) DTYPE, by allowing it to operate with a non-isolated DC power source (a direct-to-mains connection) which eliminates the need for a bulky and expensive isolation transformer.

However, as well as operating from a non-isolated/direct-to-mains DC power supply, the Gold Drum HV (High Voltage) DTYPE can also operate from an isolated power supply or batteries.

When rectifying the AC voltage source, the AC voltage-level must be limited as follows:

Drive Model (V)	AC voltage-level limit (VAC)	DC Maximum (VDC)
400	270	390
800	528	747

6.4.1.1. Direct-to-Mains Power Source

This section relates to the configuration of the drive, which is connected directly to the mains.

To connect the non-isolated DC power supply (Table 1):

- For best immunity, it is highly recommended to use twisted cables for the DC power supply cable. A 3-wire shielded cable should be used. The gauge is determined by the actual current consumption of the motor.
- Connect both ends of the cable shield to the closest ground connection, one end near the
 power supply and the other end to the PE terminal on the Gold Drum HV (High Voltage)
 DTYPE's heat sink.
- 3. For safety reasons connect the VN- of the power supply to the closest ground connection in the power supply side. This connection is only for non-isolated connections.
- 4. Connect the appropriate terminal lugs from the DC Power Input cables to the VP+, VN-, and PE terminals on the Gold Drum HV (High Voltage) DTYPE.
 - a. To mount the power supply cable into the drive, use the barrel connector, M6 spring washer and M6 nut (in the drive). The required torque is 3 Nm.
 - b. To mount the PE wire into the drive, use the barrel connector, M6 flat washer, M6 spring washer and M6 screw to the heat sink. The required torque is 3 Nm.

6.4.1.1.a Three-Phase Direct-to-Mains Connection Topology

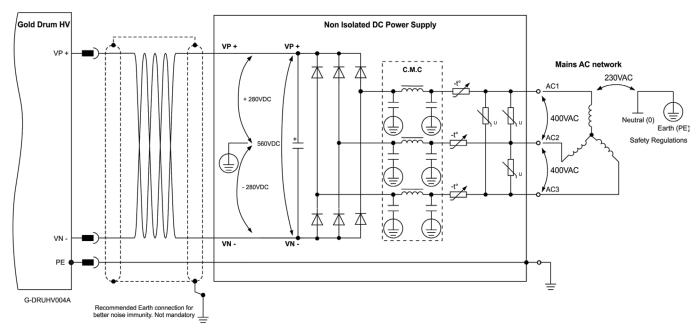
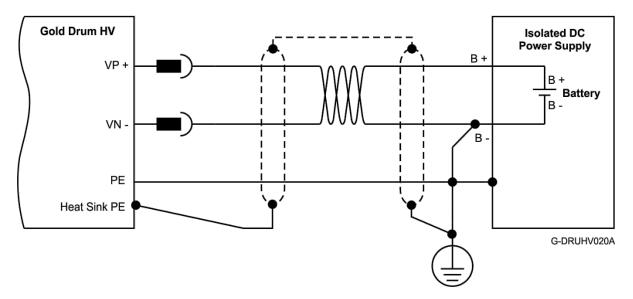


Figure 13: Non-Isolated Three-Phase Connection Topology

Caution:

- Do not connect VN- to PE. In a direct-to-mains connection the VN- must *not* be connected to the PE, as this will cause irreparable damage to the system.
- Take care and note that in a direct-to-mains connection the Neutral point is *not* the most negative voltage level. It is the mid-point level of the rectified DC bus.

6.4.1.1.b Multiple Connections Topology


In a multi-axis application it is likely that a single power supply can feed several drives in parallel. The power supply is connected directly to the mains AC line and it feeds more than one drive.

This topology is efficient and cost saving, by reducing the number of power supplies and the amount of wiring. Most importantly it utilizes an energy sharing environment among all the drives that share the same DC bus network.

Figure 14: Non-Isolated Three-Phase Multiple Connection Topology

6.4.1.2. Battery Power Supply

Figure 15: Battery Connection Topology

Caution: When using batteries, it is recommended to connect the negative pole to the PE.

When doing so, the charger of the battery **must** be isolated from the mains by an isolation transformer.

6.4.2. Control and Backup Supply

Optional Backup Supply in the S, T or H option drives.

ъ.	n et	n d	
Pin	Function	Function	
S, T, or H option type (optional backup supply)			
14	+24 V Auxiliary Supply Input Positive	DC Power	
6	24 V Auxiliary Supply Input Return	DC Power	
8	VL Shield	Drain wire cable	
	GEAGHV029A 1 GEAGHV032A	VL/COMMUNICATION 8 5	

Table 2: Auxiliary 24 VDC Backup Supply Pins and Polarity

In drives that have a 0 or 1 option (only for 400 V model) in the catalog number, a smart control-supply algorithm enables the Gold Drum HV (High Voltage) DTYPE to operate with the main power supply only, with no need for an auxiliary supply voltage to supply the drive's logic section.

Note that in such a model there is no backup ability at all.

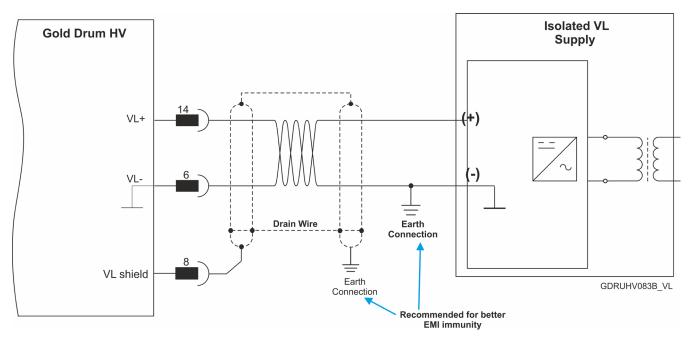
If backup functionality is required to store control parameters in the event of a mains power outage, then an S, T, or H-model Gold Drum HV (High Voltage) DTYPE should be used, with an external 24 VDC isolated supply connected to it.

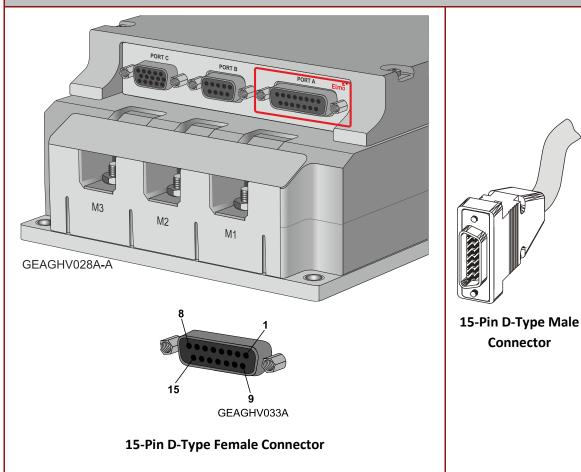
Note that the S, T, or H-model Gold Drum HV (High Voltage) DTYPE always requires an external 24 VDC power supply, regardless of whether or not backup functionality is required.

Connect the auxiliary 24 VDC power supply as described below.

To connect the 24 VDC backup supply:

- 1. Use a 24 AWG twisted pair shielded cable. The shield should have copper braid. The source of the 24VDC backup supply must be isolated from the mains.
- 2. For safety and EMI reasons, connect the return of the 24 VDC backup supply to the closest ground (PE) in the power supply side.
- 3. Connect the cable shield to the closest ground (PE) near the power source.
- 4. Connect the drain wire shield to the Terminal No. 8 (PE).
- 5. Before applying power, first verify that the polarity of the connection is correct.




Figure 16: 24 VDC Backup Supply VL Connection Diagram

6.5. Port A

See Section 10.3 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

Port A	Incremental Encoder		Absolute Serial Encoder	
Pin	Signal	Function	Signal	Function
12,4	+5V	Encoder +5V supply	+5V	Encoder +5V supply
3,9,11,13	COMRET	Common return	COMRET	Common Return
6	PortA_ENC_A+	Channel A+	ABS_CLK+	Abs encoder clock +
5	PortA_ENC_A-	Channel A-	ABS_CLK-	Abs encoder clock -
15	PortA_ENC_B+	Channel B+	ABS_DATA+	Abs encoder data +
14	PortA_ENC_B-	Channel B-	ABS_DATA-	Abs encoder data -
8	PortA_ENC_INDEX+	Index+	Reserved	Reserved
7	PortA_ENC_INDEX-	Index-	Reserved	Reserved
2	НА	Hall sensor A	НА	Hall sensor A
10	НВ	Hall sensor B	НВ	Hall sensor B
1	нс	Hall sensor C	НС	Hall sensor C

Pin Positions

Table 3: Port A Pin Assignments

6.5.1. Incremental Encoder

The following figure describes the connections at Port A for the Incremental encoder.

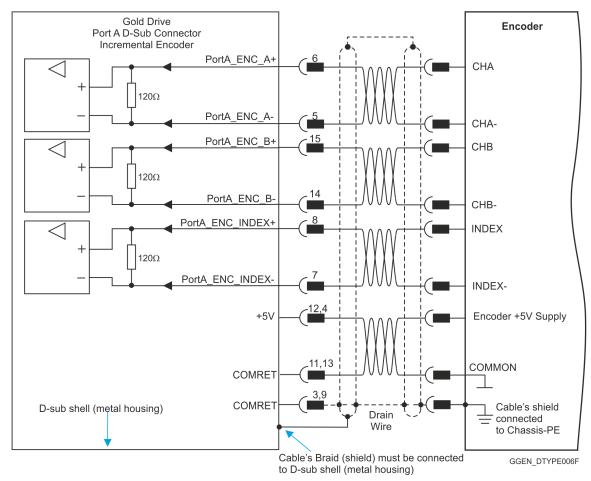


Figure 17: Port A D-Type Incremental Encoder Input – Recommended Connection Diagram

6.5.2. Hall Sensor

The following figure describes the connections at Port A for the Hall Sensor.

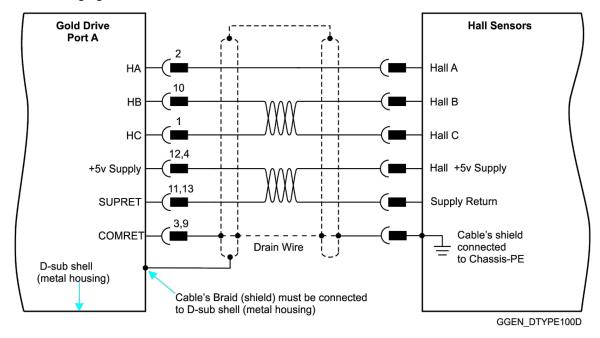


Figure 18: Hall Sensor Connection Diagram

6.5.3. Absolute Serial Type Encoder

The following figures describe the connections at Port A for the Absolute Serial type encoders.

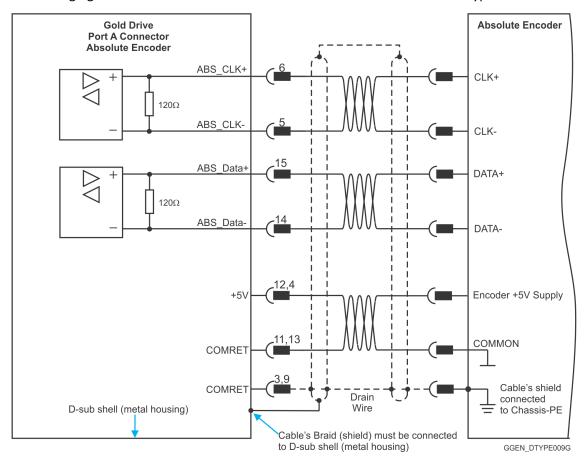


Figure 19: Absolute Serial Encoder – Recommended D-Type Connection Diagram for EnDAT,
Biss, and SSI

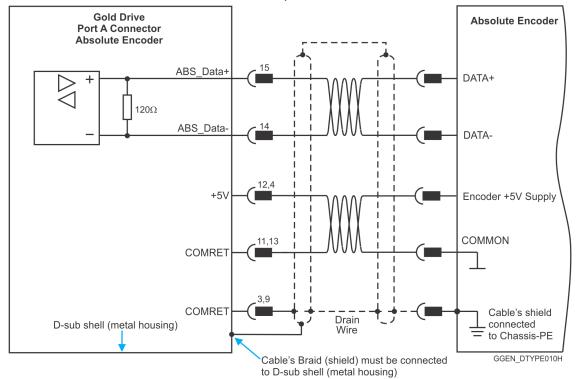


Figure 20: Absolute Serial Encoder – Recommended D-Type Connection Diagram for Sensors Supporting Data Line Only (NRZ types, e.g., Panasonic / Mitutoyo / Sanyo Danki / Tamagawa)

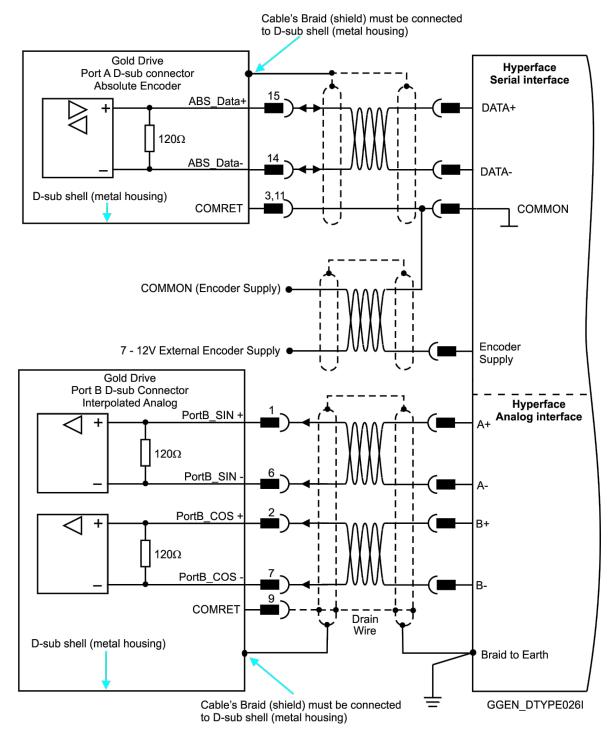


Figure 21: Absolute Serial Encoder – Recommended D-Type Connection Diagram for Stegmann Hiperface

Note: When the Hiperface protocol is used, the RS-232 connection is not available.

6.6. Port B Connector

See Section 10.4 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

	Incremental or Interpolated Analog Encoder		Resolver	
	G-DRUXXXX/YYYXEXXD		G-DRUXXXX/YYYXRXXD	
Pin	Signal	Function	Signal	Function
4	+5V	Encoder +5V supply	NC	NC
5,9	COMRET	Common Return	COMRET	Common Return
1	PortB_ENC_A+/SIN+	Channel A+ / Sine+	SIN+	Sine+
6	PortB_ENC_A-/SIN-	Channel A- / Sine-	SIN-	Sine-
2	PortB_ENC_B+/COS+	Channel B+ / Cosine+	COS+	Cosine+
7	PortB_ENC_B-/COS-	Channel B- / Cosine-	COS-	Cosine-
3	PortB_ENC_INDEX+	Index+	RESOLVER_OUT+	Vref f=1/TS, 50 mA Max.
8	PortB_ENC_INDEX-	Index -	RESOLVER_OUT-	Vref complement f= 1/TS, 50 mA Ma
	PORT C	PORT B PORT A EIn ⁶		
GEA	M3 M2 M2 AGHV028A-B	M1		9-Pin D-Type Male Connector
GEA	AGHV028A-B			9-Pin D-Type Male

Table 4: Port B Pin Assignments

6.6.1. Incremental Encoder

The following figure describes the connections at Port B for the Incremental encoder.

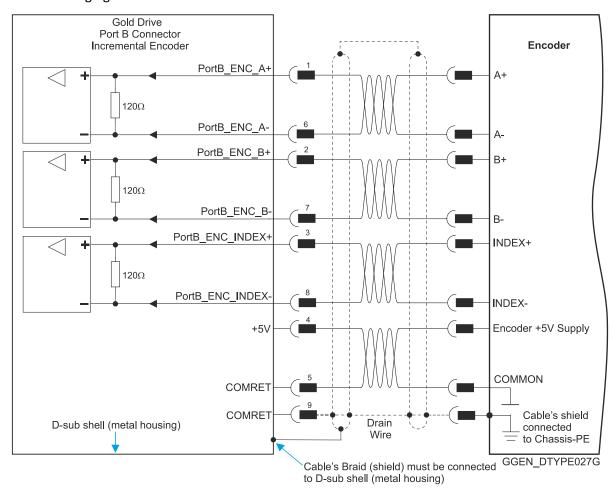


Figure 22: Port B Incremental Encoder Input – Recommended D-Type Connection Diagram

6.6.2. Interpolated Analog Encoder

The following figure describes the connections at Port B for the Interpolated Analog encoder.

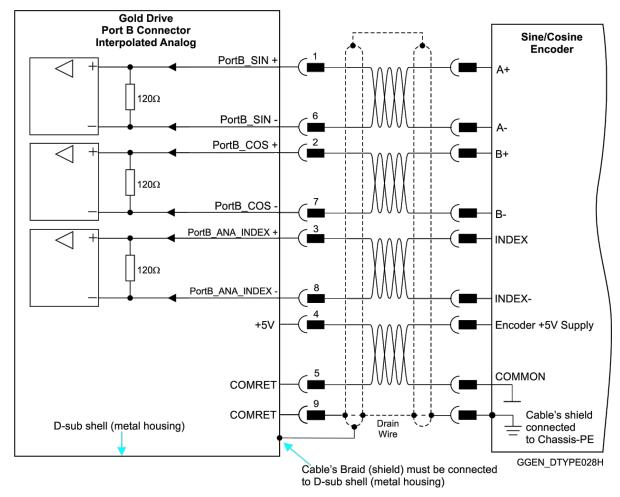


Figure 23: Port B - Interpolated Analog Encoder D-Type Connection Diagram

6.6.3. Resolver

The following figure describes the connections at Port B for the Resolver encoder.

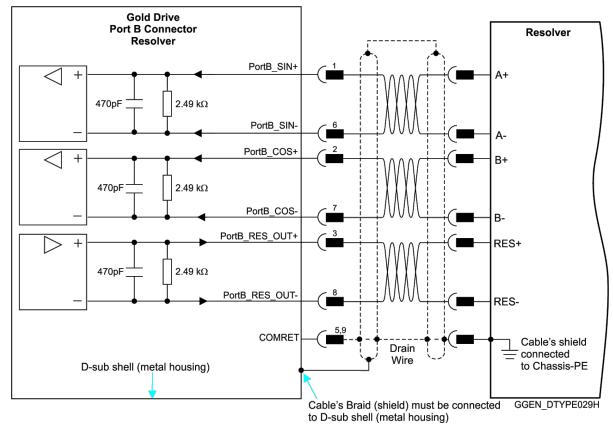


Figure 24: Port B - Resolver D-Type Connection Diagram

Port C, Analog Input, and STO

The Port C connector includes the following functions:

- Port C: Refer to Sections 10.5 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details
- STO: See Chapter 9 in the in the MAN-G-Panel Mounted Drives Hardware manual for full
- Analog input: See Section 11.2 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

Pin on Port C	Signal	Function
1	PortC_ENCO_A+	Buffered Channel A+ output/Pulse+/PWM+
2	PortC_ENCO _A-	Buffered Channel A- output / Pulse- / PWM-
3	PortC_ENCO _B+	Buffered Channel B+ output / Dir+
4	PortC_ENCO _B-	Buffered Channel B- output / Dir-
5	PortC_ENCO _ Index+	Buffered Channel INDEX+ output
6	STO1	STO 1 input (default 24 V)
7, 12	STO_RET	STO signal return
8	Reserved	Reserved
9	COMRET	Common return
10	PortC_ENCO _ Index-	Buffered Channel INDEX- output
11	STO2	STO 2 input (default 24 V)
13	ANLRET	Analog ground
14	ANALOG1-	Analog input 1-
15	ANALOG1+	Analog input 1+

Table 5: Port C Pin Assignments

6.7.1. Port C

The following figure describes the connections at Port C for the Emulated Encoder Differential.

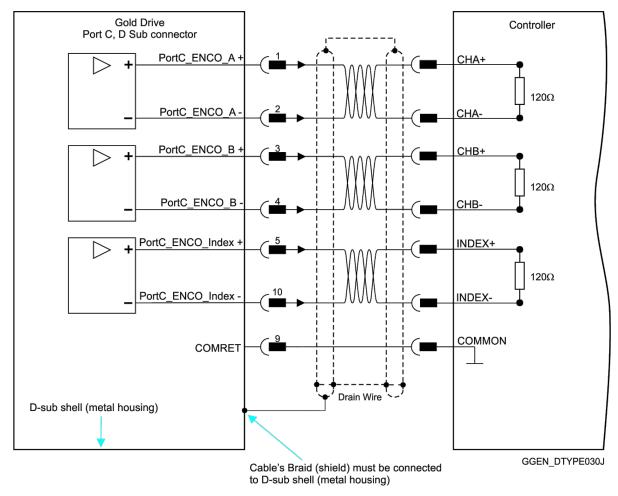


Figure 25: Emulated Encoder Differential Output – Recommended D-Type Connection Diagram

6.7.2. Analog Input

The following circuit describes the internal interface of the Analog input.

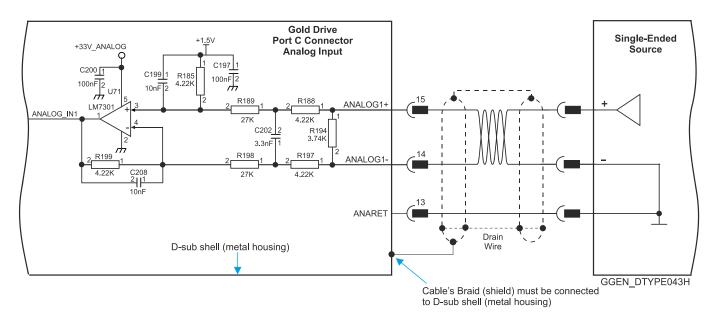


Figure 26: Differential Analog D-Type Input

6.7.3. STO

The following circuits describe the STO wiring options.

6.7.3.1. Source Mode PLC Voltage Level

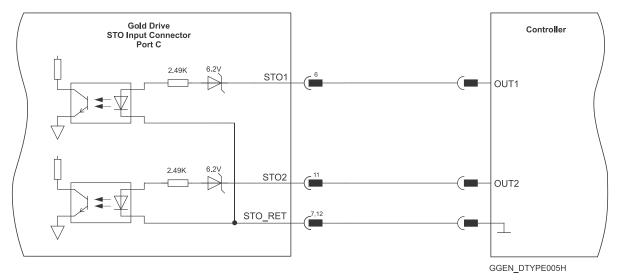


Figure 27: STO D-Type Input Connection – PLC Source Option

6.7.3.2. TTL Mode TTL Voltage Level

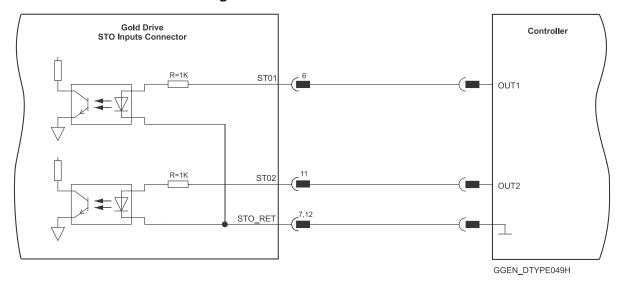


Figure 28: STO Input Connection – TTL Option

6.8. Digital Inputs and Outputs

Refer to Chapter 11 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

I/O Pins	Signal	Function
1	IN1	High speed programmable input 1
2	IN2	High speed programmable input 2
7	IN3	High speed programmable input 3
8	IN4	High speed programmable input 4
11	IN5	High speed programmable input 5
12	IN6	High speed programmable input 6 or
		STO OUT Collector in the O version
6	INRET1-6	Inputs 1 to 6 return for the Source version
		Positive input 1 to 6 for the Sink version
3	OUT1	Programmable output 1
4	OUT2	Programmable output 2
5	OUT3	Programmable output 3
13	OUT4	Programmable output 4 <i>or</i>
		STO OUT Emitter in the O version
10, 15	VDD	Supply for out 1-4
9, 14	VDDRET	Supply return for out 1-4

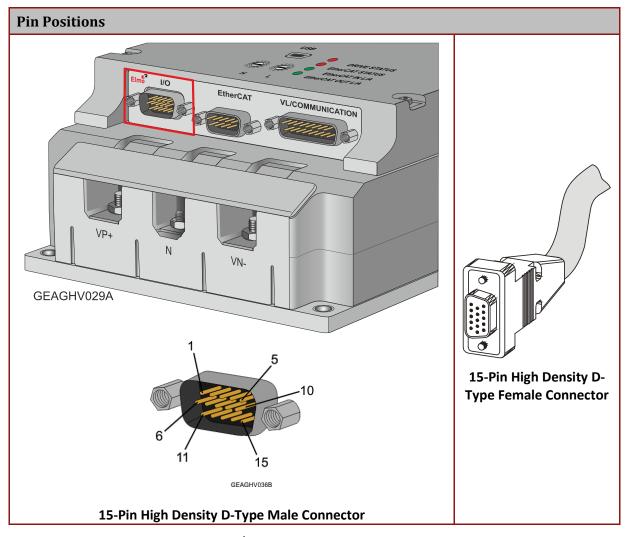


Table 6: I/O Connector Pin Assignments

6.8.1. Digital Input and Output TTL Mode

The following figure describes the connections at the I/O Port for the Digital Input and Output TTL Mode.

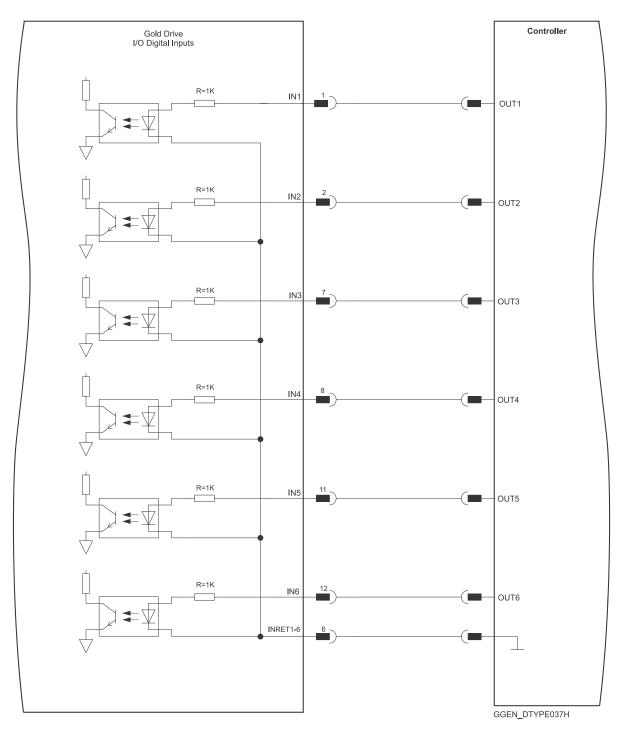


Figure 29: Digital Input TTL Mode D-Type Connection Diagram

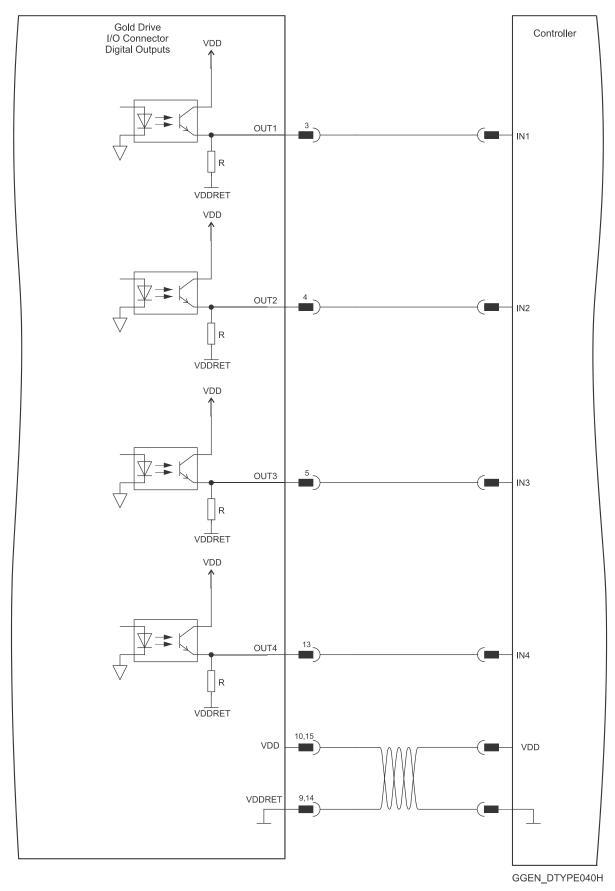


Figure 30: Digital Output D-Type Connection Diagram – TTL Option

6.8.2. Digital Input and Output PLC Source Mode

The following figure describes the connections at the I/O Port for the Digital Input and Output PLC Mode.

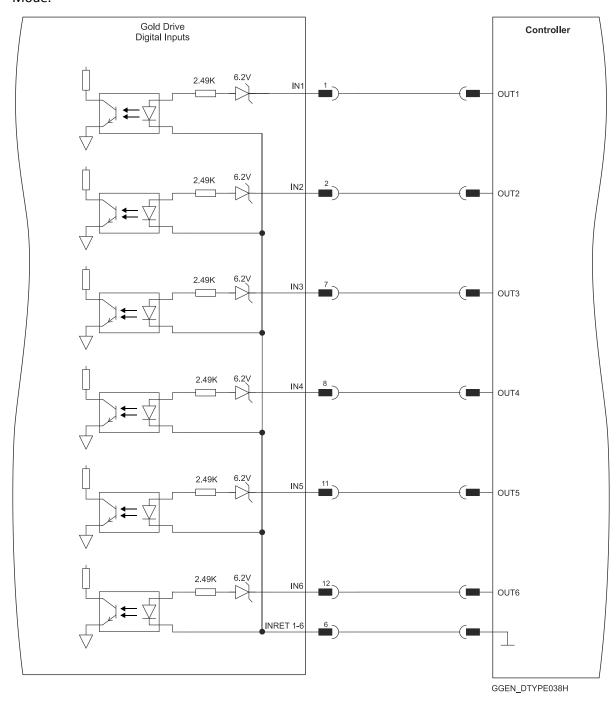


Figure 31: Digital Input D-Type Connection Diagram – Source PLC Option

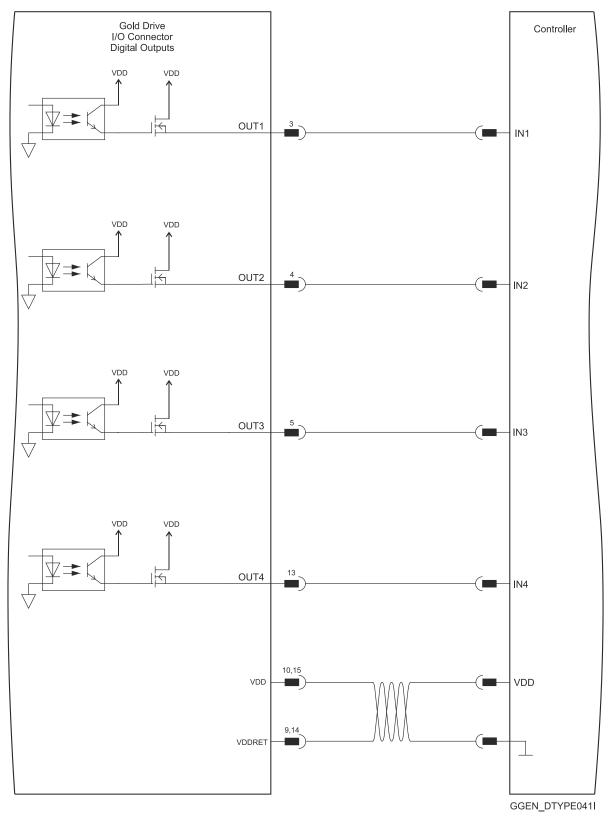


Figure 32: Digital Output D-Type Connection Diagram – Source PLC Option

6.8.3. Digital Input and Output Sink Mode

The following figure describes the connections at the I/O Port for the Digital Input and Output Sink Mode.

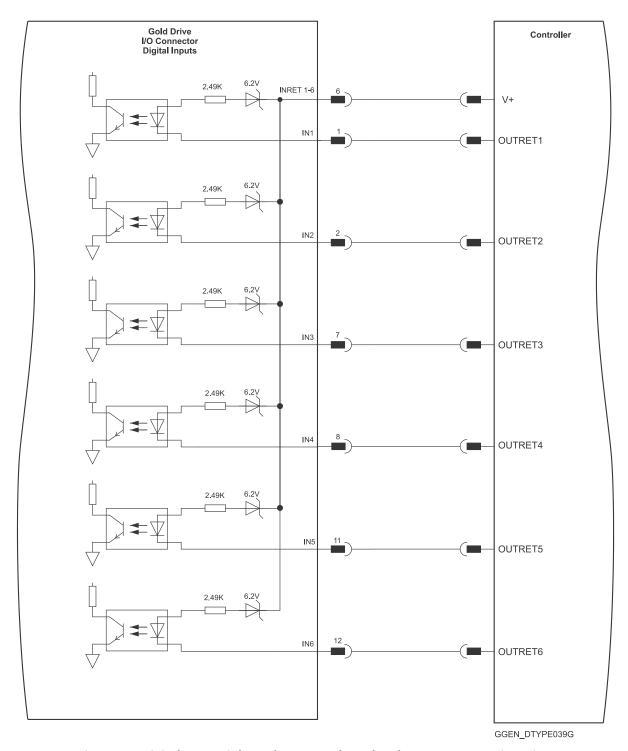


Figure 33: Digital Input Sink Mode – PLC voltage level D-Type Connection Diagram

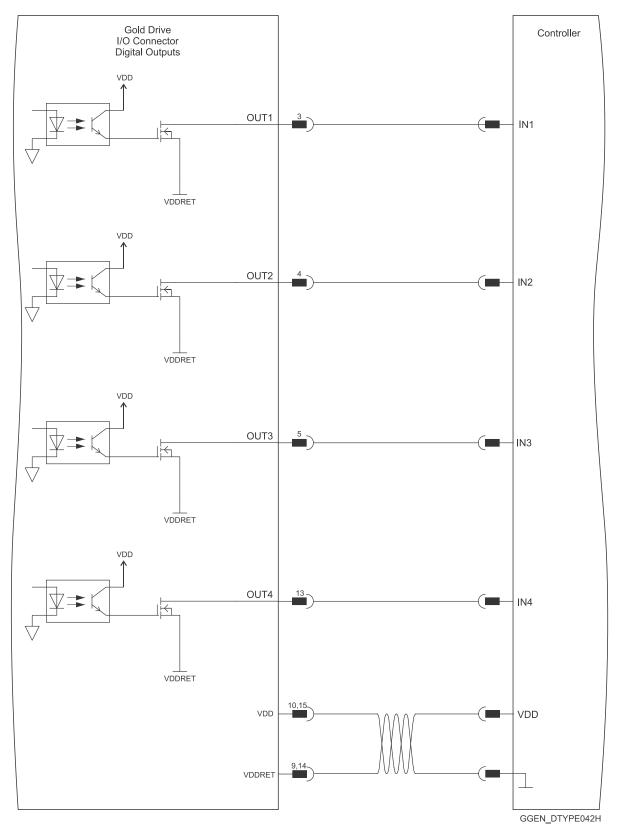


Figure 34: Digital Output as Sink Configuration D-Type Connection Diagram

6.9. USB 2.0 Option 1

See Section 12.1 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

Note: The USB connection can be either from the top mini USB connector or from the VL/Communication D-Type connector.

Note: DO NOT connect the USB communication from the top mini USB and the VL/Communication D-Type connector simultaneously.

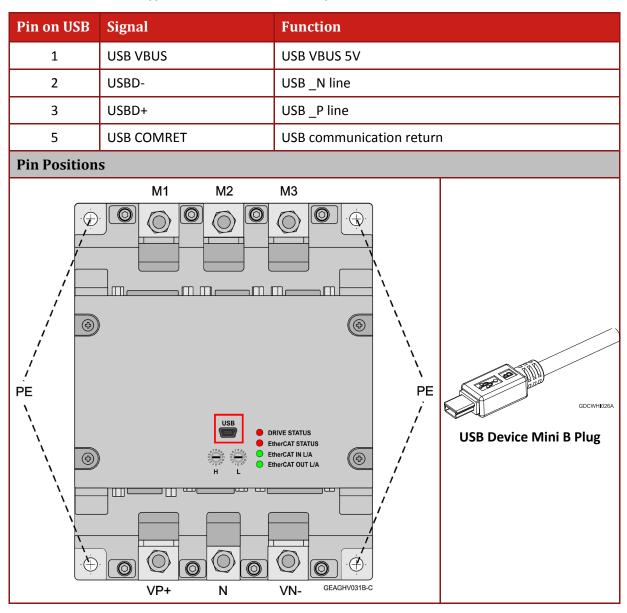


Table 7: USB 2.0 Pin Assignments

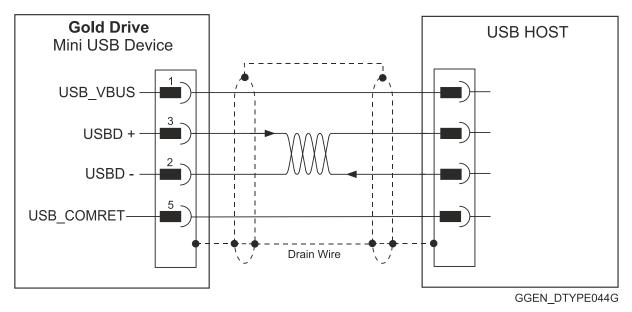
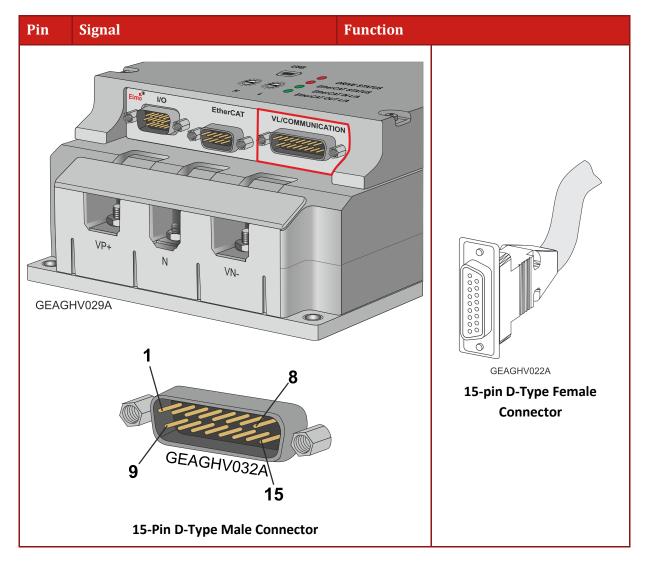


Figure 35: USB Network Diagram

6.10. VL/Communication Connector


See Section 6.4.2 for full details.

Note: The USB connection can be either from the top mini USB connector or from the **VL/Communication D-Type connector.**

DO NOT connect the USB communication from the top mini USB and the VL/Communication D-Type connector simultaneously.

Optional Backup Supply in S, T, or H option drives.

Pin	Signal	Function	
2	USB_VBUS	USB VBUS 5V	
1	USB D-	USB _N line	
9	USB D+	USB _P line	
10	USB COMRET	USB Common Return	
3	COMRET	Common Return (connected to the drain wire of cable)	
11	COMRET	Common Return	
4	RS-232_RX/RS-422_RX+	RS-232 Receive/RS-422 Receive+	
5	RS-422_TX-	RS-422 Transmit-	
13	RS-422_TX+	RS-422 Transmit+	
12	RS-232_TX/RS-422_RX-	RS-232 Transmit/RS-422 Receive-	
15	Not in use		
7	Not in use		
S, T, or	S, T, or H option type(optional backup supply)		
14	+24 V Auxiliary Supply Input Positive	DC Power	
6	24 V Auxiliary Supply Input Return	DC Power	
8	VL Shield	Drain wire cable	

6.10.1. USB 2.0 Option 2

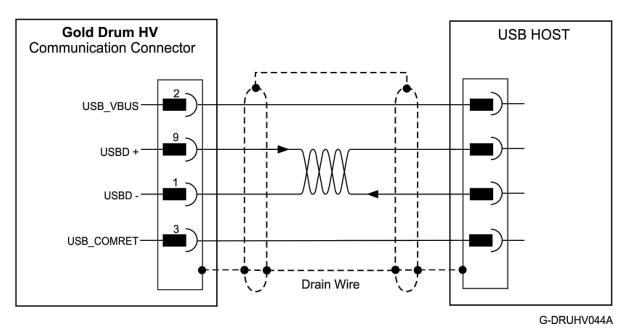


Figure 36: USB Network Diagram

6.10.2. RS-232

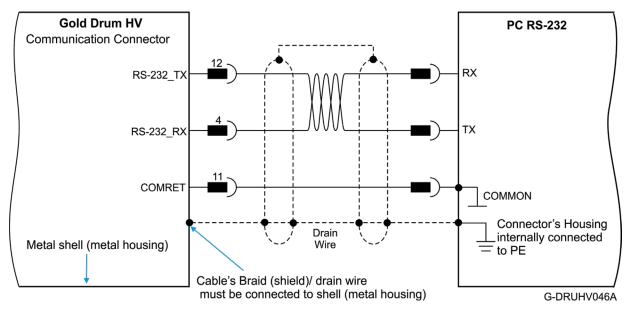


Figure 37: RS-232 D-Type Connection Diagram Example

6.10.3. RS-422 (Differential Rs-232)

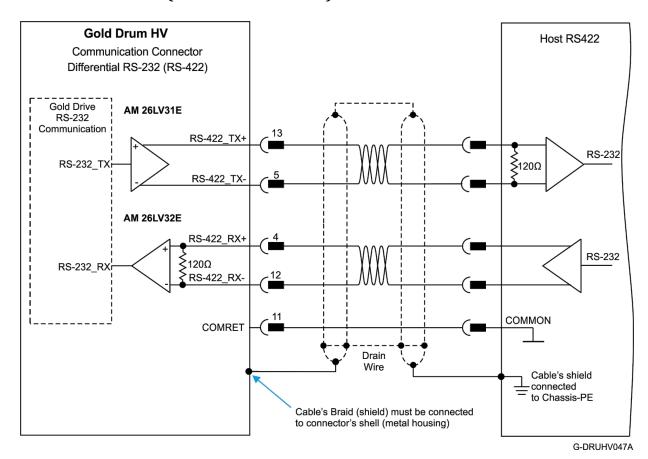
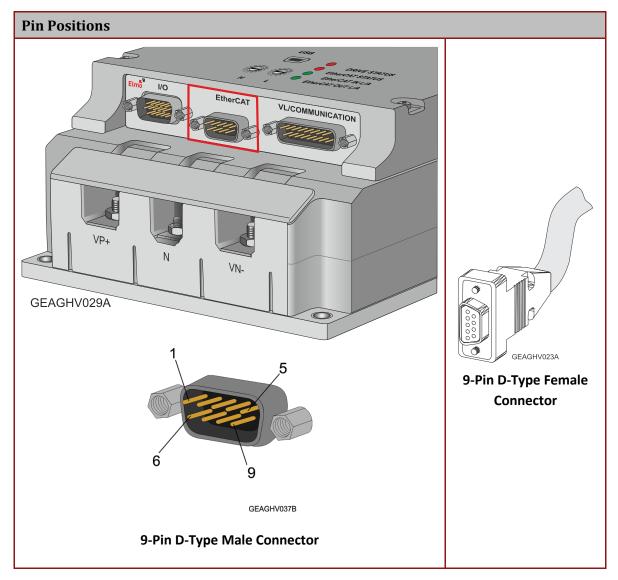


Figure 38: Differential RS-232 D-Type Connection Diagram Example

6.11. EtherCAT Communications Version

The Gold Drum HV (High Voltage) DTYPE supports EtherCAT fieldbus industrial network protocol.


Fieldbus Type	Product Number
EtherCAT + RS-232	G-DRU XXXX/YYYEXXXD
EtherCAT with switches	G-DRU XXXX/YYYFXXXD
EtherCAT + Differential RS-232 (RS-422)	G-DRU XXXX/YYYGXXXD

6.11.1. EtherCAT/Ethernet Pinouts

See Section 6.8.2 in the manual: MAN-G-Drive Hardware for the electrical diagram.

Pin	Signal	Function
1	EtherCAT_IN_TX+/Ethernet_TX+	EtherCAT in transmit+/Ethernet transmit +
2	EtherCAT_IN_RX+/Ethernet_RX+	EtherCAT in receive+/Ethernet receive+
3	EtherCAT_OUT_TX+	EtherCAT out transmit+
4	EtherCAT_OUT_RX+	EtherCAT out receive+
5	EtherCAT Shield	Drain wire cable
6	EtherCAT_IN_TX-/Ethernet_TX-	EtherCAT in transmit-/Ethernet transmit-
7	EtherCAT_IN_RX-/Ethernet_RX-	EtherCAT in receive-/Ethernet receive-
8	EtherCAT_OUT_TX-	EtherCAT out transmit-
9	EtherCAT_OUT_RX-	EtherCAT out receive-

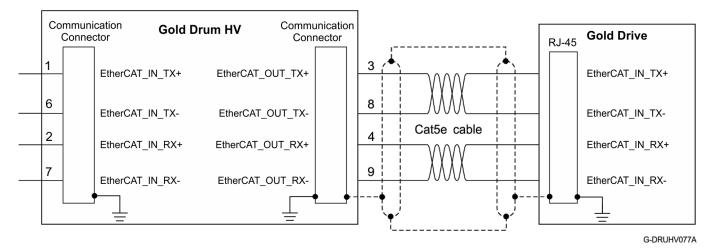


Table 8: EtherCAT Connector Pin Assignments

6.11.2. EtherCAT Wiring

Figure 39 describes the wiring diagram for the EtherCAT connections.

Figure 39: EtherCAT RJ-45 Connections

6.11.3. EtherCAT and Drive Status Indicator LEDs

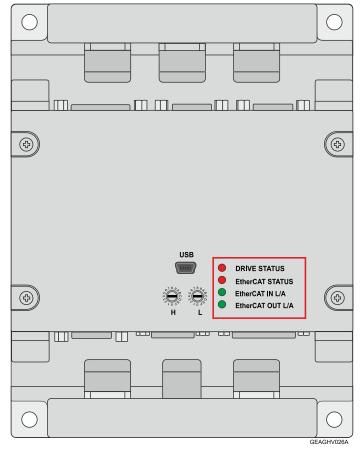


Figure 40: EtherCAT and Drive Status Indicator LEDs on Gold Drum HV (High Voltage) DTYPE

The Gold Drum HV (High Voltage) DTYPE is equipped with several light-emitting diode (LED) indicators:

- Drive Status
- EtherCAT indicators

The **Drive Status Indicator** red/green dual LED is used for immediate indication of the Initiation and Working states.

The red/green dual LED is used for immediate indication of the following states:

- **Initiation state:** In this state the LED indicates whether the drive is in the boot state (blinking red) or in the operational state (steady red).
- Working state: In this state the LED indicates whether the drive is in an amplifier failure state (red) or is ready to enable the motor (green).

The **EtherCAT status indicator** is a red/green dual LED. It combines run indication (when it is green) and error indication (when it is red) of the EtherCAT device.

The Gold Drum HV (High Voltage) DTYPE can serve as an EtherCAT slave device. For this purpose it has a D-Type connector, which is designated as EtherCAT In and EtherCAT Out.

The green LED is the link/activity indicator. It shows the state of the applicable physical link and the activity on that link. The amber LED is the speed indicator. It shows the speed of the connection on

the Ethernet line. Refer to the section 12.2.1.2 in the document; MAN-G-Panel Mounted Drives Hardware manual.

6.11.4. EtherCAT Rotary Switches

Note: This option is only for the G-DRUXXXX/YYYFXXXD type.

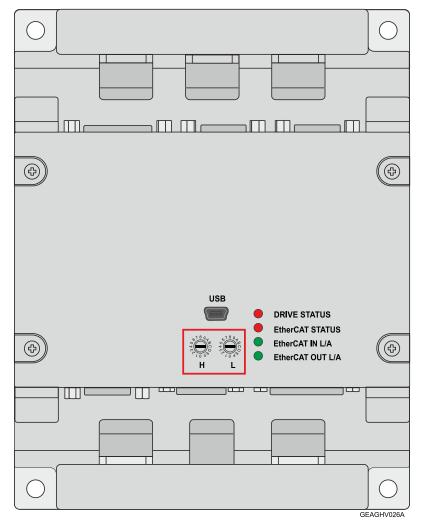


Figure 41: Position of EtherCAT Address Switches on Gold Drum HV (High Voltage) DTYPE

The positions of the switches on the drive are shown in Figure 41. Use a screwdriver to set the low and high bytes values of the drive EtherCAT address. This address is only retrieved after power-up.

6.12. CAN Communications Version

Fieldbus communications are industrial network protocols for real-time distributed control that allows connection of servo drives. The Gold Drum HV (High Voltage) DTYPE supports the following CAN fieldbus type industrial network protocol:

Fieldbus Type	Product Number
CAN + RS-232	G-DRUXXXX/YYYSXXXD
CAN + Differential RS-232 (RS-422)	G-DRUXXXX/YYYTXXXD

See Section 6.8.4 in the manual: MAN-G-Drive Hardware for the electrical diagram.



Table 9: CAN In/Out Connector Pin Assignments

6.12.1. CAN Wiring

Figure 42 describes the CAN wiring diagram below.

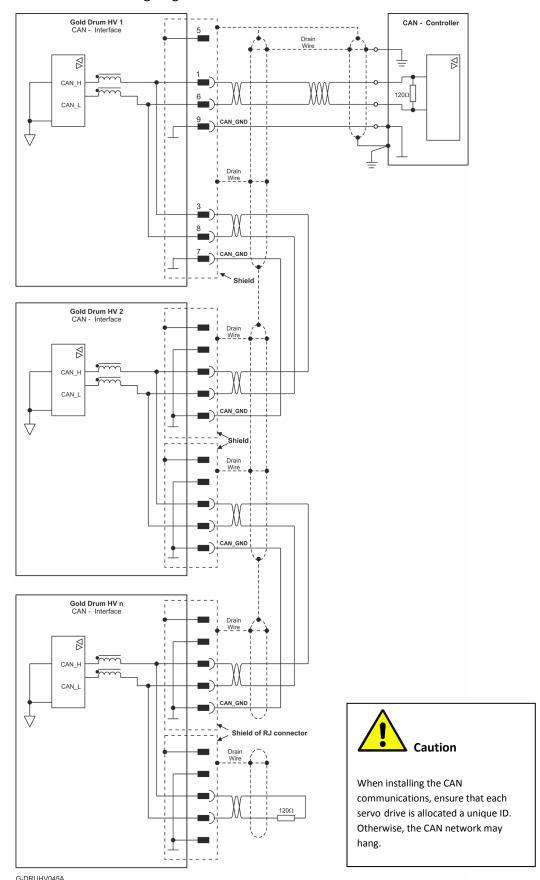


Figure 42: Gold Drum HV (High Voltage) DTYPE Connection Diagram - CAN

6.12.2. **CAN Indicators**

There is one indicator LED; the **Drive Status**. For details of the Drive Status, refer to Section 6.2 in the MAN-G-Panel Based Drive Hardware manual.

6.13. Heat Dissipation

For full power output capability the Gold Drum HV (High Voltage) DTYPE is designed to be mounted on an external heat-sink. It is highly recommended that the "Wall" on which the Drum is mounted will have heat dissipation capabilities. The Gold Drum HV (High Voltage) DTYPE at "free air convection" (without an additional heat-sink) can dissipate around 12 W for 40°C ambient temperature and not exceeding 80 °C on the heat sink.

When "Free Air Convection" is sufficient for the application it is recommended to leave approximately 10 mm of space between the Gold Drum HV (High Voltage) DTYPE's heat sink and any other assembly.

For more information, refer to Elmo's application note: Drum HV Thermal Management

When attaching to an external heat-sink, it is recommended to use N5 surface treatment and thermal foil or smearing thermal compound.

For more details, refer to Elmo's *Drum HV Heat Sink Installation Guide, P/N MAN-G-DRUMHVHSIG*.

6.13.1. Gold Drum HV (High Voltage) DTYPE Thermal Data

- Free air convection thermal resistance (θ): Approximately 7 to 8°C/W.
- Thermal time constant: Approximately 40 minutes/ 2400 seconds (thermal time constant means that the Gold Drum HV (High Voltage) DTYPE will reach 2/3 of its final temperature after 40 minutes).
- Self-heat dissipation capability (no external heat sink): 20 W for 40°C/W temperature rise.
- Shut-off temperature: 86 to 88°C.
- The thermal resistance when connecting to an external heat sink using a thermal conductive compound/foil. By proper smearing of the surface a significant improvement of the thermal resistance is achieved: 0.03°C/W.

6.13.2. Heat Dissipation Data

Heat Dissipation is shown graphically below:

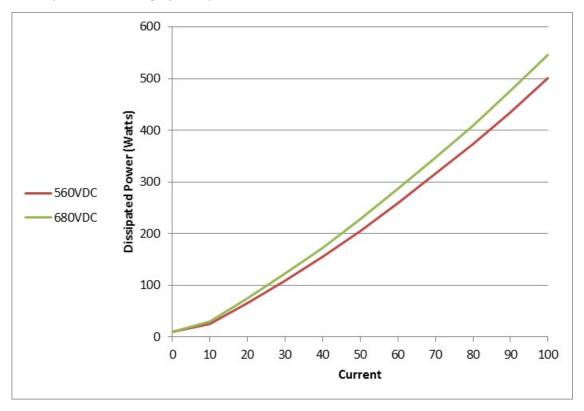


Figure 44: Dissipation versus Current Graph for 560 and 680 VDC

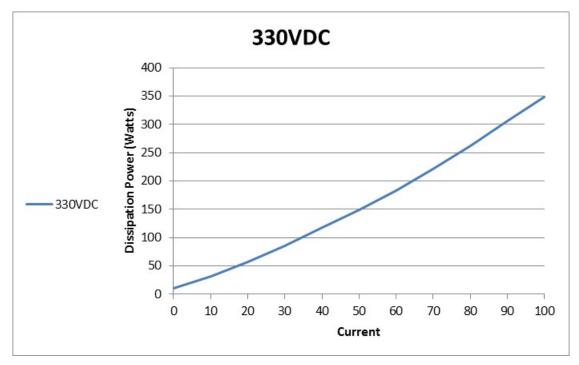


Figure 45: Dissipation versus Current Graph for 330 VDC

6.13.3. How to Use the Charts

The charts above are based upon theoretical worst-case conditions. Actual test results show 30% to 50% better power dissipation.

To determine if your application needs a heat sink:

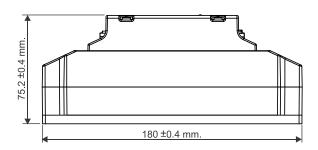
- 1. Allow maximum heat sink temperature to be 80 °C or less (shunt down is 6 °C to 8 °C higher).
- Determine the ambient operating temperature of the Gold Drum HV (High Voltage) DTYPE as ≤ 40°C.
- 3. Calculate the allowable temperature increase according to the following example: For an ambient temperature of 40 °C, $\Delta T = 80$ to 40 °C = 40 °C
- 4. Use the chart to find the actual dissipation power of the drive. Follow the voltage curve to the desired output current and then find the dissipated power.

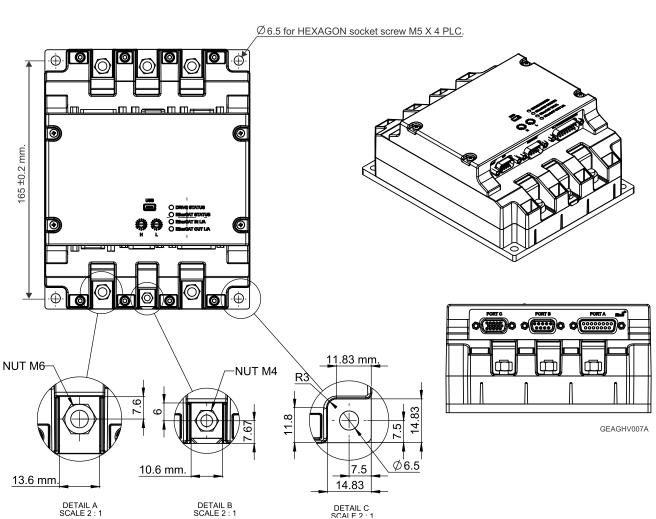
6.14. Powering Up

After the Gold Drum HV (High Voltage) DTYPE is connected to its device, it is ready to be powered up.

Caution:


Before applying power, ensure that the DC supply is within the specified range and that the proper plus-minus connections are in order.


6.15. Initializing the System


After the Gold Drum HV (High Voltage) DTYPE has been connected and mounted, the system must be set up and initialized. This is accomplished using the *EASII*, Elmo's Windows-based software application. Install the application and then perform setup and initialization according to the directions in the *EASII User Manual*.

Chapter 7: Gold Drum HV (High Voltage) DTYPE Dimensions

This chapter provides detailed technical dimensions regarding the Gold Drum HV (High Voltage) DTYPE.

Inspiring Motion Since 1988

For a list of Elmo's branches, and your local area office, refer to the Elmo site www.elmomc.com

